Solved

For Large Numbers of Degrees of Freedom, the Critical χ2\chi ^ { 2 }

Question 38

Multiple Choice

For large numbers of degrees of freedom, the critical χ2\chi ^ { 2 } values can be approximated as follows:
χ2=12(z+2k1) 2\chi ^ { 2 } = \frac { 1 } { 2 } ( \mathrm { z } + \sqrt { 2 \mathrm { k } - 1 } ) ^ { 2 }
where k\mathrm { k } is the number of degrees of freedom and z\mathrm { z } is the critical value. To find the lower critical value, the negative z-value is used, to find the upper critical value, the positive z-value is used. Use this approximation to estimate the critical value of χ2\chi ^ { 2 } in a two-tailed hypothesis test with n=146\mathrm { n } = 146 and α=0.10\alpha = 0.10 .


A) χ2123.559\chi ^ { 2 } \approx 123.559 and χ2167.079\chi ^ { 2 } \approx 167.079
B) χ2118.791\chi ^ { 2 } \approx 118.791 and χ2174.915\chi ^ { 2 } \approx 174.915
C) χ2124.484\chi ^ { 2 } \approx 124.484 and χ2168.154\chi ^ { 2 } \approx 168.154
D) χ2117.888\chi ^ { 2 } \approx 117.888 and χ2173.818\chi ^ { 2 } \approx 173.818

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions