Solved

In Constructing a Confidence Interval For σ\sigma Or σ2\sigma ^ { 2 }

Question 29

Multiple Choice

In constructing a confidence interval for σ\sigma or σ2\sigma ^ { 2 } , a table is used to find the critical values χL2\chi { } _ { L } ^ { 2 } and χR2\chi _ { \mathrm { R } } ^ { 2 } for values of n101\mathrm { n } \leq 101 . For larger values of n,χL2n , \chi _ { \mathrm { L } } ^ { 2 } and χR2\chi _ { \mathrm { R } } ^ { 2 } can be approximated by using the following formula: χ2=12[±zα/2+2k1]2\chi ^ { 2 } = \frac { 1 } { 2 } \left[ \pm \mathrm { z } _ { \alpha / 2 } + \sqrt { 2 \mathrm { k } - 1 } \right] ^ { 2 } where k\mathrm { k } is the number of degrees of freedom and zα/2\mathrm { z } _ { \alpha / 2 } is the critical z score. Estimate the critical values χL2\chi _ { \mathrm { L } } ^ { 2 } and χR2\chi _ { \mathrm { R } } ^ { 2 } for a situation in which you wish to construct a 95%95 \% confidence interval for σ\sigma and in which the sample size is n=295n = 295 .


A) χL2255.930,χR2335.776\chi _ { L } ^ { 2 } \approx 255.930 , \chi _ { R } ^ { 2 } \approx 335.776

B) χL2247.934,χR2342.908\chi _ { \mathrm { L } } ^ { 2 } \approx 247.934 , \chi _ { \mathrm { R } } ^ { 2 } \approx 342.908

C) χL2248.853,χR2343.989\chi _ { L } ^ { 2 } \approx 248.853 , \chi _ { R } ^ { 2 } \approx 343.989

D) χL2254.998,χR2334.708\chi _ { \mathrm { L } } ^ { 2 } \approx 254.998 , \chi _ { \mathrm { R } } ^ { 2 } \approx 334.708

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions