Solved

When Performing a Rank Correlation Test, One Alternative to Using rS=±t2t2+n2r _ { S } = \pm \sqrt { \frac { t ^ { 2 } } { t ^ { 2 } + n - 2 } }

Question 85

Multiple Choice

When performing a rank correlation test, one alternative to using the Critical Values of Spearman's Rank Correlation Coefficient table to find critical values is to compute them using this approximation:
rS=±t2t2+n2r _ { S } = \pm \sqrt { \frac { t ^ { 2 } } { t ^ { 2 } + n - 2 } }
where tt is the t\mathrm { t } -score from the tt Distribution table corresponding to n2\mathrm { n } - 2 degrees of freedom. Use this approximation to find critical values of rS\mathrm { r } _ { \mathrm { S } } for the case where n=7\mathrm { n } = 7 and α=0.05\alpha = 0.05 .


A) ±0.669\pm 0.669
B) ±0.569\pm 0.569
C) ±0.755\pm 0.755
D) ±0.448\pm 0.448

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions