Solved

Solve the Problem FR\mathrm { F } _ { \mathrm { R } }

Question 68

Multiple Choice

Solve the problem.
-When performing a hypothesis test for the ratio of two population variances, the upper critical F value is denoted FR\mathrm { F } _ { \mathrm { R } } . The lower critical F\mathrm { F } value, FL\mathrm { F } _ { \mathrm { L } } , can be found as follows: interchange the degrees of freedom, and then take the reciprocal of the resulting F\mathrm { F } value found in table A5.FR\mathrm { A } - 5 . \mathrm { F } _ { \mathrm { R } } can be denoted Fα/2\mathrm { F } _ { \alpha / 2 } and FL\mathrm { F } _ { \mathrm { L } } can be denoted F1α/2\mathrm { F } _ { 1 } - \alpha / 2
Find the critical values FL\mathrm { F } _ { \mathrm { L } } and FR\mathrm { F } _ { \mathrm { R } } for a two-tailed hypothesis test based on the following values:
n1=25,n2=16,α=0.10\mathrm { n } _ { 1 } = 25 , \mathrm { n } _ { 2 } = 16 , \alpha = 0.10


A) 0.4745,2.28780.4745,2.2878
B) 0.5327,2.28780.5327,2.2878
C) 0.7351,2.23780.7351,2.2378
D) 0.4745,2.43710.4745,2.4371

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions