Solved

Solve the Problem χ2\chi ^ { 2 } Values Can Be Approximated as Follows

Question 83

Multiple Choice

Solve the problem.
-For large numbers of degrees of freedom, the critical χ2\chi ^ { 2 } values can be approximated as follows:
χ2=12(z+2k1) 2\chi ^ { 2 } = \frac { 1 } { 2 } ( z + \sqrt { 2 k - 1 } ) ^ { 2 }
where k\mathrm { k } is the number of degrees of freedom and z\mathrm { z } is the critical value. To find the lower critical value, the negat z-value is used, to find the upper critical value, the positive z-value is used. Use this approximation to estimate the critical value of χ2\chi ^ { 2 } in a two-tailed hypothesis test with n=144\mathrm { n } = 144 and α=0.10\alpha = 0.10 .


A) χ2116.985\chi ^ { 2 } \approx 116.985 and χ2172.721\chi ^ { 2 } \approx 172.721
B) χ2116.082\chi ^ { 2 } \approx 116.082 and χ2171.624\chi ^ { 2 } \approx 171.624
C) χ2122.635\chi ^ { 2 } \approx 122.635 and χ2166.004\chi ^ { 2 } \approx 166.004
D) χ2121.710\chi ^ { 2 } \approx 121.710 and χ2164.928\chi ^ { 2 } \approx 164.928

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions