Solved

Solve the Problem NnN1\sqrt { \frac { N - n } { N - 1 } }

Question 52

Multiple Choice

Solve the problem.
-When obtaining a confidence interval for a population mean in the case of a finite population of size N and a sample size n which is greater than 0.05N, the margin of error is multiplied by the following finite population correction factor: NnN1\sqrt { \frac { N - n } { N - 1 } }
Find the 95%95 \% confidence interval for the mean of 200 weights if a sample of 35 of those weights yields a mean of lb\mathrm { lb } and a\mathrm { a } standard deviation of 23.2lb23.2 \mathrm { lb } .


A) 140.3lb<μ<152.3lb140.3 \mathrm { lb } < \mu < 152.3 \mathrm { lb }
B) 138.6lb<μ<154.0lb138.6 \mathrm { lb } < \mu < 154.0 \mathrm { lb }
C) 137.9lb<μ<154.7lb137.9 \mathrm { lb } < \mu < 154.7 \mathrm { lb }
D) 139.3lb<μ<153.3lb139.3 \mathrm { lb } < \mu < 153.3 \mathrm { lb } .3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions