Solved

A Confidence Interval for the Slope β1\beta _ { 1 }

Question 51

Multiple Choice

A confidence interval for the slope β1\beta _ { 1 } for a regression line y=β0+β1x\mathrm { y } = \beta _ { 0 } + \beta _ { 1 } \mathrm { x } can be found by evaluating the limits in t\mathrm { t } interval below:
b1E<β1<b1+Eg where E=(tα/2) seex2(x) 2/n.\begin{array} { l } \mathrm { b } _ { 1 } - \mathrm { E } < \beta _ { 1 } < \mathrm { b } _ { 1 } + \mathrm { E } _ { g } \\\text { where } \mathrm { E } = \frac { \left( \mathrm { t } _ { \alpha / 2 } \right) \mathrm { se } _ { \mathrm { e } } } { \sqrt { \sum \mathrm { x } ^ { 2 } - \left( \sum \mathrm { x } \right) ^ { 2 } / \mathrm { n } } } .\end{array}
The critical value tα/2t _ { \alpha / 2 } is found from the t-table using n2\mathrm { n } - 2 degrees of freedom and b1\mathrm { b } _ { 1 } is calculated in the usual v from the sample data.
Use the data below to obtain a 95%95 \% confidence interval estimate of β1\beta _ { 1 } .
x (hours studied)  2.54.55.17.911.6y (score on test)  6670608393\begin{array}{c|ccccc}\mathrm{x} \text { (hours studied) } & 2.5 & 4.5 & 5.1 & 7.9 & 11.6 \\\hline \mathrm{y} \text { (score on test) } & 66 & 70 & 60 & 83 & 93\end{array}


A) 0.322<β1<6.4880.322 < \beta _ { 1 } < 6.488
B) 1.936<β1<4.8741.936 < \beta _ { 1 } < 4.874
C) 0.134<β1<6.6760.134 < \beta _ { 1 } < 6.676
D) 0.686<β1<6.1240.686 < \beta _ { 1 } < 6.124

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions