Solved

Find All Cube Roots of the Complex Number 64cis12064 \operatorname { cis } 120 ^ { \circ }

Question 46

Multiple Choice

Find all cube roots of the complex number. Leave answers in trigonometric form.
- 64cis12064 \operatorname { cis } 120 ^ { \circ }


A) 4(32+12i) ,4(32+12i) ,4(3212i) 4 \left( \frac { \sqrt { 3 } } { 2 } + \frac { 1 } { 2 } \mathrm { i } \right) , 4 \left( - \frac { \sqrt { 3 } } { 2 } + \frac { 1 } { 2 } \mathrm { i } \right) , 4 \left( \frac { \sqrt { 3 } } { 2 } - \frac { 1 } { 2 } \mathrm { i } \right)
B) 4(.7660+.6428i) ,4(.9397+.3420i) ,4(.1736.9848i) 4 ( .7660 + .6428 \mathrm { i } ) , 4 ( - .9397 + .3420 \mathrm { i } ) , 4 ( .1736 - .9848 \mathrm { i } )
C) 4(12+32i) ,4(12i32) ,4(12+32i) 4 \left( - \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i } \right) , 4 \left( \frac { 1 } { 2 } \mathrm { i } - \frac { \sqrt { 3 } } { 2 } \right) , 4 \left( \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i } \right)
D) 4(.6428+.7660i) ,4(.3420+.9397i) ,4(.9848.1736i) 4 ( .6428 + .7660 \mathrm { i } ) , 4 ( - .3420 + .9397 \mathrm { i } ) , 4 ( .9848 - .1736 \mathrm { i } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions