Solved

Use Identities to Find the Exact Value y=3sin(πx7.41.3π7.4)y = 3 \sin \left( \frac { \pi x } { 7.4 } - \frac { 1.3 \pi } { 7.4 } \right)

Question 3

Multiple Choice

Use Identities to find the exact value.
-Tides go up and down in a 14.8-hour period. The average depth of a certain river is 7 m and ranges from 4 to 10 m. The variation can be approximated by a sine curve. Write an equation that gives the
Approximate variation y, if x is the number of hours after midnight and high tide occurs at 5:00 am.


A) y=3sin(πx7.41.3π7.4) y = 3 \sin \left( \frac { \pi x } { 7.4 } - \frac { 1.3 \pi } { 7.4 } \right)
B) y=7sin(πx7.45π7.4) \mathrm { y } = 7 \sin \left( \frac { \pi \mathrm { x } } { 7.4 } - \frac { 5 \pi } { 7.4 } \right)
C) y=3sin(πx7.45π7.4) y = 3 \sin \left( \frac { \pi x } { 7.4 } - \frac { 5 \pi } { 7.4 } \right)
D) y=7sin(πx7.45π) y = 7 \sin \left( \frac { \pi x } { 7.4 } - 5 \pi \right)

Correct Answer:

verifed

Verified

Related Questions