Solved

Solve the Problem RR , When Designing a Particular Road Is R=V2 g(f+tanα)\mathrm { R } = \frac { \mathrm { V } ^ { 2 } } { \mathrm {~g} ( \mathrm { f } + \tan \alpha ) }

Question 91

Multiple Choice

Solve the problem.
-A formula used by an engineer to determine the safe radius of a curve, RR , when designing a particular road is: R=V2 g(f+tanα) \mathrm { R } = \frac { \mathrm { V } ^ { 2 } } { \mathrm {~g} ( \mathrm { f } + \tan \alpha ) } , where α\alpha is the superelevation of the road and V\mathrm { V } is the velocity (in feet per second) for which the curve is designed. If α=2.1,f=0.1, g=30\alpha = 2.1 ^ { \circ } , \mathrm { f } = 0.1 , \mathrm {~g} = 30 , and R=1229.5ft\mathrm { R } = 1229.5 \mathrm { ft } , find V. Round to the nearest foot per second.


A) V=74ft\mathrm { V } = 74 \mathrm { ft } per sec
B) V=69ftV = 69 \mathrm { ft } per sec
C) V=71ftV = 71 \mathrm { ft } per sec
D) V=67ftV = 67 \mathrm { ft } per sec

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions