Solved

In Constructing a Confidence Interval For σ\sigma Or σ2\sigma ^ { 2 }

Question 13

Multiple Choice

In constructing a confidence interval for σ\sigma or σ2\sigma ^ { 2 } , a table is used to find the critical values χL2\chi _ { \mathrm { L } } ^ { 2 } and χR2\chi _ { \mathrm { R } } ^ { 2 } for values of n101n \leq 101 . For larger values of n,χL2n , \chi _ { \mathrm { L } } ^ { 2 } and χR2\chi _ { \mathrm { R } } ^ { 2 } can be approximated by using the following formula: χ2=12±zα/2+2k12\chi ^ { 2 } = \frac { 1 } { 2 } \pm z _ { \alpha / 2 } + \sqrt { 2 k - 1 } ^ { 2 } where kk is the number of degrees of freedom and zα/2z _ { \alpha / 2 } is the critical zz -score. Construct the 90%90 \% confidence interval for σ\sigma using the following sample data: a sample of size n=232n = 232 yields a mean weight of 154lb154 \mathrm { lb } and a standard deviation of 25.5lb25.5 \mathrm { lb } . Round the confidence interval limits to the nearest hundredth.


A) 23.66lb<σ<27.58lb23.66 \mathrm { lb } < \sigma < 27.58 \mathrm { lb }
B) 23.39lb<σ<28.09lb23.39 \mathrm { lb } < \sigma < 28.09 \mathrm { lb }
C) 24.09lb<σ<27.15lb24.09 \mathrm { lb } < \sigma < 27.15 \mathrm { lb }
D) 23.71lb<σ<27.65lb23.71 \mathrm { lb } < \sigma < 27.65 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions