Solved

Sketch the Graph of the Function f(x)=log3(x6)f ( x ) = \log _ { 3 } ( x - 6 )

Question 42

Multiple Choice

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.
- f(x) =log3(x6) f ( x ) = \log _ { 3 } ( x - 6 )
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f ( x )  = \log _ { 3 } ( x - 6 )     A)  Shift  y = \log _ { 3 } x  right 6 units   B)  Shift  y = \log _ { 3 } x  left 6 units   C)  Shift  y = \log _ { 3 } x  right 6 units   D)  Shift  y = \log _ { 3 } x  left 6 units


A) Shift y=log3xy = \log _ { 3 } x right 6 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f ( x )  = \log _ { 3 } ( x - 6 )     A)  Shift  y = \log _ { 3 } x  right 6 units   B)  Shift  y = \log _ { 3 } x  left 6 units   C)  Shift  y = \log _ { 3 } x  right 6 units   D)  Shift  y = \log _ { 3 } x  left 6 units
B) Shift y=log3xy = \log _ { 3 } x left 6 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f ( x )  = \log _ { 3 } ( x - 6 )     A)  Shift  y = \log _ { 3 } x  right 6 units   B)  Shift  y = \log _ { 3 } x  left 6 units   C)  Shift  y = \log _ { 3 } x  right 6 units   D)  Shift  y = \log _ { 3 } x  left 6 units
C) Shift y=log3xy = \log _ { 3 } x right 6 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f ( x )  = \log _ { 3 } ( x - 6 )     A)  Shift  y = \log _ { 3 } x  right 6 units   B)  Shift  y = \log _ { 3 } x  left 6 units   C)  Shift  y = \log _ { 3 } x  right 6 units   D)  Shift  y = \log _ { 3 } x  left 6 units
D) Shift y=log3xy = \log _ { 3 } x left 6 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f ( x )  = \log _ { 3 } ( x - 6 )     A)  Shift  y = \log _ { 3 } x  right 6 units   B)  Shift  y = \log _ { 3 } x  left 6 units   C)  Shift  y = \log _ { 3 } x  right 6 units   D)  Shift  y = \log _ { 3 } x  left 6 units

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions