menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    College Algebra Graphs
  4. Exam
    Exam 3: Quadratic Functions and Equations; Inequalities
  5. Question
    Match the Equation to the Correct Graph\[y = - \frac { 1 } { 3 } ( x + 5 ) ^ { 2 } - 5\]
Solved

Match the Equation to the Correct Graph y=−13(x+5)2−5y = - \frac { 1 } { 3 } ( x + 5 ) ^ { 2 } - 5y=−31​(x+5)2−5

Question 181

Question 181

Multiple Choice

Match the equation to the correct graph.
- y=−13(x+5) 2−5y = - \frac { 1 } { 3 } ( x + 5 ) ^ { 2 } - 5y=−31​(x+5) 2−5


A)
 Match the equation to the correct graph. - y = - \frac { 1 } { 3 } ( x + 5 )  ^ { 2 } - 5  A)    B)    C)    D)
B)
 Match the equation to the correct graph. - y = - \frac { 1 } { 3 } ( x + 5 )  ^ { 2 } - 5  A)    B)    C)    D)
C)
 Match the equation to the correct graph. - y = - \frac { 1 } { 3 } ( x + 5 )  ^ { 2 } - 5  A)    B)    C)    D)
D)
 Match the equation to the correct graph. - y = - \frac { 1 } { 3 } ( x + 5 )  ^ { 2 } - 5  A)    B)    C)    D)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q176: Solve.<br>- <span class="ql-formula" data-value="9 x ^

Q177: Solve.<br>- <span class="ql-formula" data-value="49 \mathrm {

Q178: Use the quadratic formula to find

Q179: Solve.<br>-A rock falls from a tower

Q180: Simplify. Write your answers in the

Q182: State whether the function is linear

Q183: Solve.<br>- <span class="ql-formula" data-value="\sqrt { 3

Q184: Use the quadratic formula to find

Q185: Simplify. Write your answer in the

Q186: Find the intervals on which the

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines