Solved

Solve the Problem (Sd)(t)=3.21t( S \circ \mathrm { d } ) ( \mathrm { t } ) = 3.21 \mathrm { t }

Question 3

Multiple Choice

Solve the problem.
-Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 1.9 feet per second. Find a function, d(t) , which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d) , which gives the length of Ken's shadow in terms of d. Then find (Sd) (t) =3.21t( S \circ \mathrm { d } ) ( \mathrm { t } ) = 3.21 \mathrm { t }


A) (Sd) (t) =1.05t( \mathrm { S } \circ \mathrm { d } ) ( \mathrm { t } ) = 1.05 \mathrm { t }
B) (Sd) (t) =1.81t( \mathrm { S } \circ \mathrm { d } ) ( \mathrm { t } ) = 1.81 \mathrm { t }
C) (Sd) (t) =1.43t( \mathrm { S } \circ \mathrm { d } ) ( \mathrm { t } ) = 1.43 \mathrm { t }
D) (Sd) (t) ( S \circ \mathrm { d } ) ( \mathrm { t } )

Correct Answer:

verifed

Verified

Related Questions