Solved

The Least-Squares Regression Model for One Explanatory Variable Is Given yi=β0+β1xi+εi\mathrm { y } _ { \mathrm { i } } = \beta _ { 0 } + \beta _ { 1 } \mathrm { x } _ { \mathrm { i } } + \varepsilon _ { \mathrm { i } }

Question 56

Multiple Choice

The least-squares regression model for one explanatory variable is given by the equation


A) yi=β0+β1xi+εi\mathrm { y } _ { \mathrm { i } } = \beta _ { 0 } + \beta _ { 1 } \mathrm { x } _ { \mathrm { i } } + \varepsilon _ { \mathrm { i } }
B) y=mx+by = m x + b
C) yyi=m(xxi) y - y _ { i } = m \left( x - x _ { i } \right)
D) yi=AiBixi+Ciy _ { i } = \frac { A _ { i } } { B _ { i } } x _ { i } + C _ { i }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions