Solved

Find the Domain of the Square Root Function f(x)=x2f ( x ) = \sqrt { x - 2 }

Question 42

Multiple Choice

Find the domain of the square root function. Then use the domain to choose the correct graph of the function.
- f(x) =x2f ( x ) = \sqrt { x - 2 }


A) domain of f:[2,) \mathrm { f: } [ 2 , \infty )
 Find the domain of the square root function. Then use the domain to choose the correct graph of the function. - f ( x )  = \sqrt { x - 2 }  A)  domain of  \mathrm { f: } [ 2 , \infty )     B)  domain of  f : [ - 2 , \infty )     C)  domain of  f : ( - , - 2 ]    D)  domain of  f : ( * , 2 ]
B) domain of f:[2,) f : [ - 2 , \infty )
 Find the domain of the square root function. Then use the domain to choose the correct graph of the function. - f ( x )  = \sqrt { x - 2 }  A)  domain of  \mathrm { f: } [ 2 , \infty )     B)  domain of  f : [ - 2 , \infty )     C)  domain of  f : ( - , - 2 ]    D)  domain of  f : ( * , 2 ]
C) domain of f:(,2]f : ( - , - 2 ]
 Find the domain of the square root function. Then use the domain to choose the correct graph of the function. - f ( x )  = \sqrt { x - 2 }  A)  domain of  \mathrm { f: } [ 2 , \infty )     B)  domain of  f : [ - 2 , \infty )     C)  domain of  f : ( - , - 2 ]    D)  domain of  f : ( * , 2 ]
D) domain of f:(,2]f : ( * , 2 ]
 Find the domain of the square root function. Then use the domain to choose the correct graph of the function. - f ( x )  = \sqrt { x - 2 }  A)  domain of  \mathrm { f: } [ 2 , \infty )     B)  domain of  f : [ - 2 , \infty )     C)  domain of  f : ( - , - 2 ]    D)  domain of  f : ( * , 2 ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions