Solved

Matrix a Is Given A=[30154917]A = \left[ \begin{array} { r r r r } 3 & 0 & 1 & 5 \\- 4 & 9 & - 1 & 7\end{array} \right]

Question 59

Multiple Choice

Matrix A is given. Find appropriate identity matrices Im and In such that ImA = A and AIn = A.
- A=[30154917]A = \left[ \begin{array} { r r r r } 3 & 0 & 1 & 5 \\- 4 & 9 & - 1 & 7\end{array} \right]


A) Im=[1001],In=[100010001]\mathrm { I } _ { \mathrm { m } } = \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right] , \mathrm { I } _ { \mathrm { n } } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]
B) Im=[1001],In=[1000010000100001]\mathrm { I } _ { \mathrm { m } } = \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right] , \mathrm { I } _ { \mathrm { n } } = \left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]
C) Im=[1000010000100001],In=[1001]\mathrm { I } _ { \mathrm { m } } = \left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] , \mathrm { I } _ { \mathrm { n } } = \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right]
D) Im=[100010001],In=[1111]\mathrm { I } _ { \mathrm { m } } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] , \mathrm { I } _ { \mathrm { n } } = \left[ \begin{array} { l l } 1 & 1 \\ 1 & 1 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions