Solved

Use Gauss-Jordan Elimination to Solve the Linear System and Determine x+y+z=7xy+2z=72x+3z=14\begin{aligned}x + y + z & = 7 \\x - y + 2 z & = 7 \\2 x + 3 z & = 14\end{aligned}

Question 165

Multiple Choice

Use Gauss-Jordan elimination to solve the linear system and determine whether the system has a unique solution, no solution, or infinitely many solutions. If the system has infinitely many solutions, describe the solution as an ordered
triple involving variable z.
- x+y+z=7xy+2z=72x+3z=14\begin{aligned}x + y + z & = 7 \\x - y + 2 z & = 7 \\2 x + 3 z & = 14\end{aligned}


A) (3z27,2z,z) \left( - \frac { 3 z } { 2 } - 7,2 z , z \right)
B) (3z2+7,2z,z) \left( - \frac { 3 z } { 2 } + 7,2 z , z \right)
C) (3z2+7,z2,z) \left( - \frac { 3 z } { 2 } + 7 , \frac { z } { 2 } , z \right)
D) (3z27,z2,z) \left( - \frac { 3 z } { 2 } - 7 , \frac { z } { 2 } , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions