Solved

Use Gauss-Jordan Elimination to Solve the Linear System and Determine x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}

Question 56

Multiple Choice

Use Gauss-Jordan elimination to solve the linear system and determine whether the system has a unique solution, no solution, or infinitely many solutions. If the system has infinitely many solutions, describe the solution as an ordered
triple involving variable z.
- x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}


A) (19z4+20,9z4+3,z) \left( \frac { 19 \mathrm { z } } { 4 } + 20 , - \frac { 9 \mathrm { z } } { 4 } + 3 , \mathrm { z } \right)
B) (19z4+20,9z4+3,z) \left( \frac { 19 z } { 4 } + 20 , \frac { 9 z } { 4 } + 3 , z \right)
C) (19z4+20,9z43,z) \left( \frac { 19 \mathrm { z } } { 4 } + 20 , - \frac { 9 \mathrm { z } } { 4 } - 3 , \mathrm { z } \right)
D) (19z4+20,9z4+3,z) \left( - \frac { 19 z } { 4 } + 20 , - \frac { 9 z } { 4 } + 3 , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions