Solved

Use Gauss-Jordan Elimination to Solve the Linear System and Determine x+y+z=92x3y+4z=7\begin{array} { l } x + y + z = 9 \\2 x - 3 y + 4 z = 7\end{array}

Question 39

Multiple Choice

Use Gauss-Jordan elimination to solve the linear system and determine whether the system has a unique solution, no solution, or infinitely many solutions. If the system has infinitely many solutions, describe the solution as an ordered
triple involving variable z.
- x+y+z=92x3y+4z=7\begin{array} { l } x + y + z = 9 \\2 x - 3 y + 4 z = 7\end{array}


A) (275,135,1) \left( \frac { 27 } { 5 } , \frac { 13 } { 5 } , 1 \right)
B) (75z+345,25z+115,z) \left( - \frac { 7 } { 5 } z + \frac { 34 } { 5 } , \frac { 2 } { 5 } z + \frac { 11 } { 5 } , z \right)
C) no solution
D) (35z+165,85z+295,z) \left( \frac { 3 } { 5 } z + \frac { 16 } { 5 } , - \frac { 8 } { 5 } z + \frac { 29 } { 5 } , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions