Solved

Find the Center, Transverse Axis, Vertices, Foci, and Asymptotes of the Hyperbola

Question 44

Multiple Choice

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
- 4x216y2=644 x ^ { 2 } - 16 y ^ { 2 } = 64


A) center at (0,0) ( 0,0 )
transverse axis is xx -axis
vertices: (2,0) ,(2,0) ( - 2,0 ) , ( 2,0 )
foci: (25,0) ,(25,0) ( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
B) center at (0,0) ( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (0,4) ,(0,4) ( 0 , - 4 ) , ( 0,4 )
foci: (0,25) ,(0,25) ( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
C) center at (0,0) ( 0,0 )
transverse axis is xx -axis
vertices: (4,0) ,(4,0) ( - 4,0 ) , ( 4,0 )
foci: (23,0) ,(23,0) ( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
D) center at (0,0) ( 0,0 )
transverse axis is xx -axis
vertices: (4,0) ,(4,0) ( - 4,0 ) , ( 4,0 )
foci: (25,0) ,(25,0) ( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions