Solved

For the Following Rational Function, Identify the Coordinates of All f(x)=xx24xf ( x ) = \frac { x } { x ^ { 2 } - 4 x }

Question 187

Multiple Choice

For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes.
- f(x) =xx24xf ( x ) = \frac { x } { x ^ { 2 } - 4 x }
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x } { x ^ { 2 } - 4 x }     A)  no removable discontinuities; no  x -intercept, no  y -intercept;   asymptotes  x = - 4 x = 0 , y = 0    B)  no removable discontinuities;  no  \mathrm { x } -intercept, no  \mathrm { y } -intercept;  asymptotes  x = 4 , x = 0 , y = 0    C)  removable discontinuity at  \left( 0 , \frac { 1 } { 4 } \right)  ; \quad   no  x -intercept, no  y -intercept; asymptote  x = - 4    D)  removable discontinuity at  \left( 0 , - \frac { 1 } { 4 } \right)  ;    no  x -intercept, no  y -intercept;  asymptotes  x = 4 , y = 0


A) no removable discontinuities;
no xx -intercept, no yy -intercept;
asymptotes x=4x=0,y=0x = - 4 x = 0 , y = 0
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x } { x ^ { 2 } - 4 x }     A)  no removable discontinuities; no  x -intercept, no  y -intercept;   asymptotes  x = - 4 x = 0 , y = 0    B)  no removable discontinuities;  no  \mathrm { x } -intercept, no  \mathrm { y } -intercept;  asymptotes  x = 4 , x = 0 , y = 0    C)  removable discontinuity at  \left( 0 , \frac { 1 } { 4 } \right)  ; \quad   no  x -intercept, no  y -intercept; asymptote  x = - 4    D)  removable discontinuity at  \left( 0 , - \frac { 1 } { 4 } \right)  ;    no  x -intercept, no  y -intercept;  asymptotes  x = 4 , y = 0
B) no removable discontinuities;
no x\mathrm { x } -intercept, no y\mathrm { y } -intercept;
asymptotes x=4,x=0,y=0x = 4 , x = 0 , y = 0
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x } { x ^ { 2 } - 4 x }     A)  no removable discontinuities; no  x -intercept, no  y -intercept;   asymptotes  x = - 4 x = 0 , y = 0    B)  no removable discontinuities;  no  \mathrm { x } -intercept, no  \mathrm { y } -intercept;  asymptotes  x = 4 , x = 0 , y = 0    C)  removable discontinuity at  \left( 0 , \frac { 1 } { 4 } \right)  ; \quad   no  x -intercept, no  y -intercept; asymptote  x = - 4    D)  removable discontinuity at  \left( 0 , - \frac { 1 } { 4 } \right)  ;    no  x -intercept, no  y -intercept;  asymptotes  x = 4 , y = 0
C) removable discontinuity at (0,14) ;\left( 0 , \frac { 1 } { 4 } \right) ; \quad
no xx -intercept, no yy -intercept;
asymptote x=4x = - 4
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x } { x ^ { 2 } - 4 x }     A)  no removable discontinuities; no  x -intercept, no  y -intercept;   asymptotes  x = - 4 x = 0 , y = 0    B)  no removable discontinuities;  no  \mathrm { x } -intercept, no  \mathrm { y } -intercept;  asymptotes  x = 4 , x = 0 , y = 0    C)  removable discontinuity at  \left( 0 , \frac { 1 } { 4 } \right)  ; \quad   no  x -intercept, no  y -intercept; asymptote  x = - 4    D)  removable discontinuity at  \left( 0 , - \frac { 1 } { 4 } \right)  ;    no  x -intercept, no  y -intercept;  asymptotes  x = 4 , y = 0
D) removable discontinuity at (0,14) ;\left( 0 , - \frac { 1 } { 4 } \right) ;
no xx -intercept, no yy -intercept;
asymptotes x=4,y=0x = 4 , y = 0
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x } { x ^ { 2 } - 4 x }     A)  no removable discontinuities; no  x -intercept, no  y -intercept;   asymptotes  x = - 4 x = 0 , y = 0    B)  no removable discontinuities;  no  \mathrm { x } -intercept, no  \mathrm { y } -intercept;  asymptotes  x = 4 , x = 0 , y = 0    C)  removable discontinuity at  \left( 0 , \frac { 1 } { 4 } \right)  ; \quad   no  x -intercept, no  y -intercept; asymptote  x = - 4    D)  removable discontinuity at  \left( 0 , - \frac { 1 } { 4 } \right)  ;    no  x -intercept, no  y -intercept;  asymptotes  x = 4 , y = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions