Solved

For the Following Rational Function, Identify the Coordinates of All f(x)=x4x27x+12f ( x ) = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }

Question 23

Multiple Choice

For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes.
- f(x) =x4x27x+12f ( x ) = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }    A)  no removable discontinuities; no  \mathrm { x } -intercept, no  \mathrm { y } -intercept asymptotes  x = 3 , x = 4 , y = 0    B)  no removable discontinuities; no  \mathrm { x } -intercept,  no     \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;   asymptotes \(x = - 3 , x = - 4 , y = 0\)    C)  removable discontinuity at \(( - 4 , - 1 ) \) ; no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ; asymptotes \(x = - 3 , y = 0\)     D)  removable discontinuity at \(( 4,1 ) \) ;   no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)   asymptotes \(x = 3 , y = 0\)


A) no removable discontinuities;
no \(\mathrm { x }\) -intercept, no \(\mathrm { y }\) -intercept
asymptotes \(x = 3 , x = 4 , y = 0\)
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }    A)  no removable discontinuities; no  \mathrm { x } -intercept, no  \mathrm { y } -intercept asymptotes  x = 3 , x = 4 , y = 0    B)  no removable discontinuities; no  \mathrm { x } -intercept,  no   \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;   asymptotes \(x = - 3 , x = - 4 , y = 0\)    C)  removable discontinuity at \(( - 4 , - 1 ) \) ; no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ; asymptotes \(x = - 3 , y = 0\)     D)  removable discontinuity at \(( 4,1 ) \) ;   no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)   asymptotes \(x = 3 , y = 0\)
B) no removable discontinuities; no \(\mathrm { x }\) -intercept,
no \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;
asymptotes \(x = - 3 , x = - 4 , y = 0\)
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }    A)  no removable discontinuities; no  \mathrm { x } -intercept, no  \mathrm { y } -intercept asymptotes  x = 3 , x = 4 , y = 0    B)  no removable discontinuities; no  \mathrm { x } -intercept,  no   \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;   asymptotes \(x = - 3 , x = - 4 , y = 0\)    C)  removable discontinuity at \(( - 4 , - 1 ) \) ; no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ; asymptotes \(x = - 3 , y = 0\)     D)  removable discontinuity at \(( 4,1 ) \) ;   no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)   asymptotes \(x = 3 , y = 0\)
C) removable discontinuity at \(( - 4 , - 1 ) \) ;
no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ;
asymptotes \(x = - 3 , y = 0\)
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }    A)  no removable discontinuities; no  \mathrm { x } -intercept, no  \mathrm { y } -intercept asymptotes  x = 3 , x = 4 , y = 0    B)  no removable discontinuities; no  \mathrm { x } -intercept,  no   \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;   asymptotes \(x = - 3 , x = - 4 , y = 0\)    C)  removable discontinuity at \(( - 4 , - 1 ) \) ; no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ; asymptotes \(x = - 3 , y = 0\)     D)  removable discontinuity at \(( 4,1 ) \) ;   no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)   asymptotes \(x = 3 , y = 0\)
D) removable discontinuity at \(( 4,1 ) \) ;
no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)
asymptotes \(x = 3 , y = 0\)
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { x - 4 } { x ^ { 2 } - 7 x + 12 }    A)  no removable discontinuities; no  \mathrm { x } -intercept, no  \mathrm { y } -intercept asymptotes  x = 3 , x = 4 , y = 0    B)  no removable discontinuities; no  \mathrm { x } -intercept,  no   \(\mathrm { y ; no \(x\) -intercept, no \(y\) -intercept;   asymptotes \(x = - 3 , x = - 4 , y = 0\)    C)  removable discontinuity at \(( - 4 , - 1 ) \) ; no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , \frac { 1 } { 3 } \right) \) ; asymptotes \(x = - 3 , y = 0\)     D)  removable discontinuity at \(( 4,1 ) \) ;   no \(x\) -intercept, \(y\) -intercept: \(\left( 0 , - \frac { 1 } { 3 } \right) \)   asymptotes \(x = 3 , y = 0\)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions