Solved

For the Following Rational Function, Identify the Coordinates of All f(x)=3x24x4x2f ( x ) = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }

Question 106

Multiple Choice

For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes.
- f(x) =3x24x4x2f ( x ) = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }    A)  removable discontinuity at  ( 2,8 )  ;  x -intercept:  \left( - \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  no asymptotes   B)  removable discontinuity at  ( 2,0 )  ; x-intercept:  ( 2,0 )  , y-intercept:  ( 0,2 )  ; no asymptotes    C)  removable discontinuity at  ( 2 , - 4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ; no asymptotes    D)  removable discontinuity at  ( 2,4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  x -intercept:  ( - 2,0 )  , y -intercept:  ( 0,2 )  ; no asymptotes


A) removable discontinuity at (2,8) ( 2,8 ) ;
xx -intercept: (23,0) ,y\left( - \frac { 2 } { 3 } , 0 \right) , y -intercept: (0,2) ;( 0,2 ) ;
no asymptotes
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }    A)  removable discontinuity at  ( 2,8 )  ;  x -intercept:  \left( - \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  no asymptotes   B)  removable discontinuity at  ( 2,0 )  ; x-intercept:  ( 2,0 )  , y-intercept:  ( 0,2 )  ; no asymptotes    C)  removable discontinuity at  ( 2 , - 4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ; no asymptotes    D)  removable discontinuity at  ( 2,4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  x -intercept:  ( - 2,0 )  , y -intercept:  ( 0,2 )  ; no asymptotes
B) removable discontinuity at (2,0) ( 2,0 ) ;
x-intercept: (2,0) ( 2,0 ) , y-intercept: (0,2) ( 0,2 ) ;
no asymptotes
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }    A)  removable discontinuity at  ( 2,8 )  ;  x -intercept:  \left( - \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  no asymptotes   B)  removable discontinuity at  ( 2,0 )  ; x-intercept:  ( 2,0 )  , y-intercept:  ( 0,2 )  ; no asymptotes    C)  removable discontinuity at  ( 2 , - 4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ; no asymptotes    D)  removable discontinuity at  ( 2,4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  x -intercept:  ( - 2,0 )  , y -intercept:  ( 0,2 )  ; no asymptotes

C) removable discontinuity at (2,4) ( 2 , - 4 ) ;
xx -intercept: (23,0) ,y\left( \frac { 2 } { 3 } , 0 \right) , y -intercept: (0,2) ( 0,2 ) ;
no asymptotes
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }    A)  removable discontinuity at  ( 2,8 )  ;  x -intercept:  \left( - \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  no asymptotes   B)  removable discontinuity at  ( 2,0 )  ; x-intercept:  ( 2,0 )  , y-intercept:  ( 0,2 )  ; no asymptotes    C)  removable discontinuity at  ( 2 , - 4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ; no asymptotes    D)  removable discontinuity at  ( 2,4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  x -intercept:  ( - 2,0 )  , y -intercept:  ( 0,2 )  ; no asymptotes

D) removable discontinuity at (2,4) ( 2,4 ) ;
xx -intercept: (23,0) ,y\left( \frac { 2 } { 3 } , 0 \right) , y -intercept: (0,2) ( 0,2 ) ;
xx -intercept: (2,0) ,y( - 2,0 ) , y -intercept: (0,2) ( 0,2 ) ;
no asymptotes
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { 3 x ^ { 2 } - 4 x - 4 } { x - 2 }    A)  removable discontinuity at  ( 2,8 )  ;  x -intercept:  \left( - \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  no asymptotes   B)  removable discontinuity at  ( 2,0 )  ; x-intercept:  ( 2,0 )  , y-intercept:  ( 0,2 )  ; no asymptotes    C)  removable discontinuity at  ( 2 , - 4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ; no asymptotes    D)  removable discontinuity at  ( 2,4 )  ;  x -intercept:  \left( \frac { 2 } { 3 } , 0 \right)  , y -intercept:  ( 0,2 )  ;  x -intercept:  ( - 2,0 )  , y -intercept:  ( 0,2 )  ; no asymptotes

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions