Solved

Use the Graph to Evaluate the Expression  Find (fg)(2) and (fg)(4)\text { Find } ( f g ) ( - 2 ) \text { and } \left( \frac { f } { g } \right) ( 4 ) \text {. }

Question 173

Multiple Choice

Use the graph to evaluate the expression.
-  Find (fg) (2)  and (fg) (4) \text { Find } ( f g ) ( - 2 ) \text { and } \left( \frac { f } { g } \right) ( 4 ) \text {. }  Use the graph to evaluate the expression. - \text { Find } ( f g )  ( - 2 )  \text { and } \left( \frac { f } { g } \right)  ( 4 )  \text {. }    A)   ( \mathrm { fg } )  ( - 2 )  = 8 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right)  ( 4 )  = \frac { 1 } { 12 }  B)   ( f g )  ( - 2 )  = 8 ; \left( \frac { f } { g } \right)  ( 4 )  = \frac { 1 } { 4 }  C)   ( \mathrm { fg } )  ( - 2 )  = - 0 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right)  ( 4 )  = \frac { 1 } { 4 }  D)   ( \mathrm { fg } )  ( - 2 )  = - 40 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right)  ( 4 )  = \frac { 7 } { 4 }


A) (fg) (2) =8;(fg) (4) =112( \mathrm { fg } ) ( - 2 ) = 8 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( 4 ) = \frac { 1 } { 12 }
B) (fg) (2) =8;(fg) (4) =14( f g ) ( - 2 ) = 8 ; \left( \frac { f } { g } \right) ( 4 ) = \frac { 1 } { 4 }
C) (fg) (2) =0;(fg) (4) =14( \mathrm { fg } ) ( - 2 ) = - 0 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( 4 ) = \frac { 1 } { 4 }
D) (fg) (2) =40;(fg) (4) =74( \mathrm { fg } ) ( - 2 ) = - 40 ; \left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( 4 ) = \frac { 7 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions