Solved

The Function F Is One-To-One f(x)=x3+1f ( x ) = x ^ { 3 } + 1

Question 198

Multiple Choice

The function f is one-to-one. Find its inverse.
- f(x) =x3+1f ( x ) = x ^ { 3 } + 1


A) f1(x) =x13\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x-1 } }
B) f1(x) =x31f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x } - 1
C) f1(x) =x3+1\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } } + 1
D) f1(x) =x+13f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions