Solved

The Function F Is One-To-One f(x)=3x+1f ( x ) = \frac { 3 } { x + 1 }

Question 31

Multiple Choice

The function f is one-to-one. State the domain and the range of f and f-1. Write the domain and range in set-builder
notation.
- f(x) =3x+1f ( x ) = \frac { 3 } { x + 1 }


A) f(x) :D={xx1},R={y0}f ( x ) : D = \{ x \mid x \neq - 1 \} , R = \{ y \neq 0 \} ;
f1(x) :D={xx0},R={yy1}f ^ { - 1 } ( x ) : D = \{ x \mid x \neq 0 \} , R = \{ y \mid y \neq - 1 \}
B) f(x) f ( x ) : D is all real numbers, R={yy3R = \{ y | y \neq 3 \rangle ;
f1(x) :D={xx3},Rf ^ { - 1 } ( x ) : D = \{ x \mid x \neq 3 \} , R is all real numbers

C) f(x) f ( x ) : DD is all real numbers, RR is all real numbers;
f1(x) \mathrm { f } ^ { - 1 } ( \mathrm { x } ) : D\mathrm { D } is all real numbers, R\mathrm { R } is all real numbers

D) f(x) :D={xx3},R={yy1}f ( x ) : D = \{ x \mid x \neq 3 \} , R = \{ y \mid y \neq - 1 \} ;
f1(x) :D={xxz1},R={yy3}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \{ \mathrm { x } \mid \mathrm { x } z - 1 \} , \mathrm { R } = \{ \mathrm { y } \mid \mathrm { y } \neq 3 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions