Solved

The Function F Is One-To-One f(x)=5x1f ( x ) = \sqrt { 5 x - 1 }

Question 21

Multiple Choice

The function f is one-to-one. State the domain and the range of f and f-1. Write the domain and range in set-builder
notation.
- f(x) =5x1f ( x ) = \sqrt { 5 x - 1 }


A) f(x) :D={xx0},R={yy0}f ( x ) : D = \{ x \mid x \geq 0 \} , R = \{ y \mid y \geq 0 \} ;
B) f(x) :D={xx15},R={yy0}f ( x ) : D = \left\{ x \mid x \geq \frac { 1 } { 5 } \right\} , R = \{ y \mid y \geq 0 \} ;

f1(x) :D\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } is all real numbers, R={yy15}R = \left\{ \mathrm { y } \mid \mathrm { y } \geq \frac { 1 } { 5 } \right\}

C) f(x) :D={xx15},R={yy0f ( x ) : D = \left\{ x \mid x \geq \frac { 1 } { 5 } \right\} , R = \{ y | y \geq 0 \rangle ;
f1(x) :D={xx0},R={yy15}\mathrm { f } ^ { - 1 } ( \mathrm { x } ) : \mathrm { D } = \{ \mathrm { x } \mid \mathrm { x } \geq 0 \} , \mathrm { R } = \left\{ \mathrm { y } \mid \mathrm { y } \geq \frac { 1 } { 5 } \right\}

D) f(x) :D={xx15},Rf ( x ) : D = \left\{ x \mid x \geq \frac { 1 } { 5 } \right\} , R is all real numbers; f1(x) :D={xx0,R={yy15}f ^ { - 1 } ( x ) : D = \left\{ x | x \geq 0 \rangle , R = \left\{ y \mid y \geq \frac { 1 } { 5 } \right\} \right.
f1(x) :Df ^ { - 1 } ( x ) : D is all real numbers, R={yy15}R = \left\{ y \mid y \geq \frac { 1 } { 5 } \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions