Solved

The Function F Is One-To-One f(x)=34xf ( x ) = \sqrt { 3 - 4 x }

Question 151

Multiple Choice

The function f is one-to-one. State the domain and the range of f and f-1. Write the domain and range in set-builder
notation.
- f(x) =34xf ( x ) = \sqrt { 3 - 4 x }


A) f(x) :D={xx34},R={yy0}f1(x) :D={xx0},R={yy34}\begin{array}{l}f(x) : D=\left\{x \mid x \leq \frac{3}{4}\right\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \leq \frac{3}{4}\right\}\end{array}

B)
f(x) :D={xx34},R f(x) : D=\left\{x \mid x \leq \frac{3}{4}\right\}, R is all real numbers;
f1(x) :D \mathrm{f}^{-1}(\mathrm{x}) : \mathrm{D} is all real numbers, R={yy34} R=\left\{y \mid y \leq \frac{3}{4}\right\}

C) f(x) :D={xx0},R={yy0}f1(x) :D={xx0,R={yy34}\begin{array}{c}f(x) : D=\{x \mid x \geq 0\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\left\{x|x \geq 0\rangle, R=\left\{y \mid y \geq \frac{3}{4}\right\}\right.\end{array}

D) f(x) :D={xx34},R={yy0}f(x) : D=\left\{x \mid x \leq \frac{3}{4}\right\}, R=\{y \mid y \leq 0\}
f1(x) :D f^{-1}(x) : D is all real numbers, R={yy34} R=\left\{y \mid y \leq \frac{3}{4}\right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions