Solved

Find the Fourth Roots Of 1232i\frac { 1 } { 2 } - \frac { \sqrt { 3 } } { 2 } i

Question 117

Multiple Choice

Find the fourth roots of 1232i\frac { 1 } { 2 } - \frac { \sqrt { 3 } } { 2 } i . Write the roots in trigonometric form.


A)
w1=cos(65) +isin(65) w2=cos(155) +isin(155) w3=cos(245) +isin(245) w4=cos(335) +isin(335) \begin{array} { l } w _ { 1 } = \cos \left( 65 ^ { \circ } \right) + i \sin \left( 65 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 155 ^ { \circ } \right) + i \sin \left( 155 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 245 ^ { \circ } \right) + i \sin \left( 245 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 335 ^ { \circ } \right) + i \sin \left( 335 ^ { \circ } \right) \end{array}
B)
w1=cos(75) +isin(75) w2=cos(165) +isin(165) w3=cos(255) +isin(255) w4=cos(345) +isin(345) \begin{array} { l } w _ { 1 } = \cos \left( 75 ^ { \circ } \right) + i \sin \left( 75 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 165 ^ { \circ } \right) + i \sin \left( 165 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 255 ^ { \circ } \right) + i \sin \left( 255 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 345 ^ { \circ } \right) + i \sin \left( 345 ^ { \circ } \right) \end{array}
C)
w1=cos(80) +isin(80) w2=cos(170) +isin(170) w3=cos(260) +isin(260) w4=cos(350) +isin(350) \begin{array} { l } w _ { 1 } = \cos \left( 80 ^ { \circ } \right) + i \sin \left( 80 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 170 ^ { \circ } \right) + i \sin \left( 170 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 260 ^ { \circ } \right) + i \sin \left( 260 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 350 ^ { \circ } \right) + i \sin \left( 350 ^ { \circ } \right) \end{array}
D)
w1=cos(70) +isin(70) w2=cos(160) +isin(160) w3=cos(250) +isin(250) w4=cos(340) +isin(340) \begin{array} { l } w _ { 1 } = \cos \left( 70 ^ { \circ } \right) + i \sin \left( 70 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 160 ^ { \circ } \right) + i \sin \left( 160 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 250 ^ { \circ } \right) + i \sin \left( 250 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 340 ^ { \circ } \right) + i \sin \left( 340 ^ { \circ } \right) \end{array}
E)
w1=cos(85) +isin(85) w2=cos(175) +isin(175) w3=cos(265) +isin(265) w4=cos(355) +isin(355) \begin{array} { l } w _ { 1 } = \cos \left( 85 ^ { \circ } \right) + i \sin \left( 85 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 175 ^ { \circ } \right) + i \sin \left( 175 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 265 ^ { \circ } \right) + i \sin \left( 265 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 355 ^ { \circ } \right) + i \sin \left( 355 ^ { \circ } \right) \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions