Solved

Solve the System of Linear Equations {8x+24y+8z=516x+40y=1024x+8y16z=5\left\{ \begin{array} { l l } - 8 x + 24 y + 8 z & = 5 \\ 16 x + 40 y & = 10 \\ 24 x + 8 y - 16 z = - 5 \end{array} \right.

Question 118

Multiple Choice

Solve the system of linear equations {8x+24y+8z=516x+40y=1024x+8y16z=5\left\{ \begin{array} { l l } - 8 x + 24 y + 8 z & = 5 \\ 16 x + 40 y & = 10 \\ 24 x + 8 y - 16 z = - 5 \end{array} \right. using an inverse


A)
[xyz]=[580158]\left[ \begin{array} { l } x \\ y \\ z \end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 8 } \\ 0 \\ \frac { 15 } { 8 } \end{array} \right]
B) [xyz]=[054528]\left[ \begin{array} { l } x \\ y \\ z \end{array} \right] = \left[ \begin{array} { c } 0 \\ \frac { 5 } { 4 } \\ 5 \\ - \frac { 2 } { 8 } \end{array} \right]
C) [xyz]=[5815854]\left[ \begin{array} { l } x \\ y \\ z \end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 8 } \\ - \frac { 15 } { 8 } \\ \frac { 5 } { 4 } \end{array} \right]
D) [xyz]=[58054]\left[ \begin{array} { l } x \\ y \\ z \end{array} \right] = \left[ \begin{array} { c } \frac { 5 } { 8 } \\ 0 \\ \frac { 5 } { 4 } \end{array} \right]
E) [xyz]=[58158554]\left[ \begin{array} { l } x \\ y \\ z \end{array} \right] = \left[ \begin{array} { c } - \frac { 5 } { 8 } \\ - \frac { 15 } { 8 } \\ 5 \\ - \frac { 5 } { 4 } \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions