Solved

Find a Unit Vector Orthogonal To u\mathbf { u } And v\mathbf { v }

Question 101

Multiple Choice

Find a unit vector orthogonal to u\mathbf { u } and v\mathbf { v } .
u=\mathbf { u } = leadcoeff(a) i coeff(b) jcoeff(c) k,v=\operatorname { coeff } ( b ) \mathbf { j } \operatorname { coeff } ( \mathrm { c } ) \mathbf { k } , \mathbf { v } = leadcoeff(d) coeff(f) jcoeff(g) k\mathbf { c o e f f } ( \mathrm { f } ) \mathbf { j } \operatorname { coeff } ( \mathrm { g } ) \mathbf { k }


A)
1 leadcoeff(da 1fac)  da 1rad(\frac { 1 } { \text { leadcoeff(da } 1 \mathrm { fac } ) \sqrt { \text { da } 1 \mathrm { rad } } } \left( \right. leadcoeff( (a d) icoeff(bf) jcoeff(c g) k) \left. \left( \mathrm { a } ^ { * } \mathrm {~d} \right) \mathbf { i } \operatorname { coeff } \left( \mathrm { b } ^ { * } \mathrm { f } \right) \mathbf { j } \operatorname { coeff } \left( \mathrm { c } ^ { * } \mathrm {~g} \right) \mathbf { k } \right)
B)
1 leadcoeff ( da 2 fac )  da 2 rad (\frac { 1 } { \text { leadcoeff } ( \text { da } 2 \text { fac } ) \sqrt { \text { da } 2 \text { rad } } } \left( \right. leadcoeff (a2) icoeff(b2) jcoeff(c2) k) \left. \left( a ^ { \wedge } 2 \right) \mathbf { i } \operatorname { coeff } \left( b ^ { \wedge } 2 \right) \mathbf { j } \operatorname { coeff } \left( c ^ { \wedge } 2 \right) \mathbf { k } \right)
C) leadcoeff (bgcf) icoeff(ag+cd) jcoeff(afdb) k\left( b ^ { * } g - c ^ { * } f \right) \mathbf { i } \operatorname { coeff } \left( - a ^ { * } g + c ^ { * } d \right) \mathbf { j } \operatorname { coeff } \left( a ^ { * } f - d ^ { * } b \right) \mathbf { k }
D) 1 leadcoeff(wfac)   wrad (\frac { 1 } { \text { leadcoeff(wfac) } \sqrt { \text { wrad } } } \left( \right. leadcoeff (bgcf) icoeff(ag+cd) jcoeff(afdb) k) \left. \left( b ^ { * } g - c ^ { * } f \right) \mathbf { i } \operatorname { coeff } \left( - a ^ { * } g + c ^ { * } d \right) \mathbf { j } \operatorname { coeff } \left( a ^ { * } f - d ^ { * } b \right) \mathbf { k } \right)
E) leadcoeff(a* d) i coeff(b* f) jcoeff(cg) kf ) \mathbf { j } \operatorname { coeff } \left( c ^ { * } g \right) \mathbf { k } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions