Solved

Find a Unit Vector Orthogonal To 3i+2j3 \mathbf { i } + 2 \mathbf { j }

Question 13

Multiple Choice

Find a unit vector orthogonal to 3i+2j3 \mathbf { i } + 2 \mathbf { j } and j+5k\mathbf { j } + 5 \mathbf { k } .


A) 10i15j+3k10 \mathbf { i } - 15 \mathbf { j } + 3 \mathbf { k }
B) 10334i15334j+3334k\frac { 10 } { \sqrt { 334 } } \mathbf { i } - \frac { 15 } { \sqrt { 334 } } \mathbf { j } + \frac { 3 } { \sqrt { 334 } } \mathbf { k }
C) 10i+15j+3k10 \mathbf { i } + 15 \mathbf { j } + 3 \mathbf { k }
D) 10334i+15334j3334k- \frac { 10 } { \sqrt { 334 } } \mathbf { i } + \frac { 15 } { \sqrt { 334 } } \mathbf { j } - \frac { 3 } { \sqrt { 334 } } \mathbf { k }
E) 10334i+15334j+3334k\frac { 10 } { \sqrt { 334 } } \mathbf { i } + \frac { 15 } { \sqrt { 334 } } \mathbf { j } + \frac { 3 } { \sqrt { 334 } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions