Solved

Rewrite i=1n9i3n5\sum _ { i = 1 } ^ { n } \frac { 9 i ^ { 3 } } { n ^ { 5 } }

Question 12

Multiple Choice

Rewrite i=1n9i3n5\sum _ { i = 1 } ^ { n } \frac { 9 i ^ { 3 } } { n ^ { 5 } } as a rational function S(n) S ( n ) and find limnS(n) \lim _ { n \rightarrow \infty } S ( n ) .


A) S(n) =9(n+1) 24n2,limnS(n) =94S ( n ) = \frac { 9 ( n + 1 ) ^ { 2 } } { 4 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 9 } { 4 }
B) S(n) =9n2(n+1) 24,limnS(n) =9S ( n ) = \frac { 9 n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 } , \lim _ { n \rightarrow \infty } S ( n ) = 9
C) S(n) =n2(n+1) 236,limnS(n) =0S ( n ) = \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 36 } , \lim _ { n \rightarrow \infty } S ( n ) = 0
D) S(n) =9(n+1) 24n3,limnS(n) =0S ( n ) = \frac { 9 ( n + 1 ) ^ { 2 } } { 4 n ^ { 3 } } , \lim _ { n \rightarrow \infty } S ( n ) = 0
E) S(n) =9(n+1) 24n3S ( n ) = \frac { 9 ( n + 1 ) ^ { 2 } } { 4 n ^ { 3 } } , the limit does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions