Solved

Use Iteration to Find an Explicit Formula for the Sequence b0,b1,b2,b _ { 0 } , b _ { 1 } , b _ { 2 } , \ldots

Question 33

Essay

Use iteration to find an explicit formula for the sequence b0,b1,b2,b _ { 0 } , b _ { 1 } , b _ { 2 } , \ldots defined recursively as follows:
bk=2bk1+3 for all integers k1b0=1.\begin{array} { l } b _ { k } = 2 b _ { k - 1 } + 3 \quad \text { for all integers } k \geq 1 \\b _ { 0 } = 1 .\end{array}
If appropriate, simplify your answer using one of the following reference formulas:
(a) 1+2+3++n=n(n+1)21 + 2 + 3 + \cdots + n = \frac { n ( n + 1 ) } { 2 } for all integers n1n \geq 1 .
(b) 1+r+r2++rm=rm+11r11 + r + r ^ { 2 } + \cdots + r ^ { m } = \frac { r ^ { m + 1 } - 1 } { r - 1 } for all integers m0m \geq 0 and all real numbers r1r \neq 1 .

Correct Answer:

verifed

Verified

\[\begin{array} { l }
b _ { 0 } = 1 \\
...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions