Solved

The Binomial Theorem States That for Any Real Numbers a and B

Question 6

Essay

The binomial theorem states that for any real numbers a and b, (a+b)n=k=0n(nk)ankbk for any integer n0( a + b ) ^ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } n \\k\end{array} \right) a ^ { n - k } b ^ { k } \quad \text { for any integer } n \geq 0
Use this theorem to show that for any integer n0,k=0n(1)k(nk)3nk2k=1n \geq 0 , \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } n \\k\end{array} \right) 3 ^ { n - k } 2 ^ { k } = 1

Correct Answer:

verifed

Verified

Proof: According to the binomial theorem...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions