Solved

A Geometric Sequence Is Given {4(12)n1}\left\{ 4 \left( \frac { 1 } { 2 } \right) ^ { n - 1 } \right\}

Question 92

Multiple Choice

A geometric sequence is given. Find the common ratio and write out the first four terms.
- {4(12) n1}\left\{ 4 \left( \frac { 1 } { 2 } \right) ^ { n - 1 } \right\}


A) an=4(2) n1a _ { n } = 4 \cdot ( 2 ) ^ { n - 1 }
r=2;4,8,16,32,r = 2 ; 4,8,16,32 , \ldots
B) an=12(4) n1a _ { n } = \frac { 1 } { 2 } ( 4 ) ^ { n - 1 }
r=12;4,8,16,32,\mathrm { r } = \frac { 1 } { 2 } ; 4,8,16,32 , \ldots
C) an=4(12) n1\mathrm { a } _ { \mathrm { n } } = 4 \left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } - 1 }
r=12;4,2,1,12,\mathrm { r } = \frac { 1 } { 2 } ; 4,2,1 , \frac { 1 } { 2 } , \ldots
D) an=4(14) n1\mathrm { a } _ { \mathrm { n } } = 4 \left( \frac { 1 } { 4 } \right) ^ { \mathrm { n } - 1 }
r=14;4,1,14,116,r = \frac { 1 } { 4 } ; 4,1 , \frac { 1 } { 4 } , \frac { 1 } { 16 } , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions