Solved

Determine the Maximum Number of Turning Points of F f(x)=(x+19)4(x4)3f ( x ) = \left( x + \frac { 1 } { 9 } \right) ^ { 4 } ( x - 4 ) ^ { 3 }

Question 58

Multiple Choice

Determine the maximum number of turning points of f.
- f(x) =(x+19) 4(x4) 3f ( x ) = \left( x + \frac { 1 } { 9 } \right) ^ { 4 } ( x - 4 ) ^ { 3 }


A) above the xx -axis: (4,) ( 4 , \infty )
below the xx -axis: (,19) ,(19,4) \left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
B) above the xx -axis: (,19) ,(19,4) \left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (4,) ( 4 , \infty )
C) above the xx -axis: (19,4) \left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (,19) ,(4,) \left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
D) above the x-axis: (,19) ,(4,) \left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
below the xx -axis: (19,4) \left( - \frac { 1 } { 9 } , 4 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions