Solved

Solve the Differential Equation cosxdydx+ysinx=sinxcosx\cos x \frac { d y } { d x } + y \sin x = \sin x \cos x

Question 48

Multiple Choice

Solve the differential equation.
- cosxdydx+ysinx=sinxcosx\cos x \frac { d y } { d x } + y \sin x = \sin x \cos x


A) y=cotx+Ccosxy = \cot x + C \cos x
B) y=sinxlnsecx+Csinxy = \sin x \ln | \sec x | + C \sin x
C) y=cosxlnsecx+Ccosxy = \cos x \ln | \sec x | + C \cos x
D) y=cosxlnsecx+tanx+Ccosxy = \cos x \ln | \sec x + \tan x | + C \cos x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions