Solved

Solve the Problem y=e2xy = e ^ { - 2 x }

Question 91

Multiple Choice

Solve the problem.
-Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y=e2xy = e ^ { - 2 x } , and the line x=6x = 6 about the yy -axis.


A) 12π(113e12) \frac { 1 } { 2 } \pi \left( 1 - 13 \mathrm { e } ^ { - 12 } \right)
B) 12π(1+13e12) - \frac { 1 } { 2 } \pi \left( 1 + 13 \mathrm { e } ^ { - 12 } \right)
C) 12π(111e12) \frac { 1 } { 2 } \pi \left( 1 - 11 \mathrm { e } ^ { - 12 } \right)
D) 12π(112e12) \frac { 1 } { 2 } \pi \left( 1 - 12 \mathrm { e } ^ { - 12 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions