Solved

Evaluate the Integral by Making a Substitution and Then Using exe2x25dx\int \frac { e ^ { x } } { e ^ { 2 x } - 25 } d x

Question 161

Multiple Choice

Evaluate the integral by making a substitution and then using a table of integrals.
- exe2x25dx\int \frac { e ^ { x } } { e ^ { 2 x } - 25 } d x


A) 110ln5e2xe2x+5+C\frac { 1 } { 10 } \ln \left| \frac { 5 - \mathrm { e } ^ { 2 \mathrm { x } } } { \mathrm { e } ^ { 2 \mathrm { x } } + 5 } \right| + \mathrm { C }
B) 110ln5xx+5+C\frac { 1 } { 10 } \ln \left| \frac { 5 - x } { x + 5 } \right| + C
C) 110ln5exex+5+C\frac { 1 } { 10 } \ln \left| \frac { 5 - \mathrm { e } ^ { \mathrm { x } } } { \mathrm { e } ^ { \mathrm { x } } + 5 } \right| + \mathrm { C }
D) 110lnex+5ex5+C\frac { 1 } { 10 } \ln \left| \frac { \mathrm { e } ^ { \mathrm { x } } + 5 } { \mathrm { e } ^ { \mathrm { x } } - 5 } \right| + \mathrm { C }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions