Solved

Evaluate the Integral by Making a Substitution and Then Using tan1x+2dx\int \tan ^ { - 1 } \sqrt { x + 2 } d x

Question 271

Multiple Choice

Evaluate the integral by making a substitution and then using a table of integrals.
- tan1x+2dx\int \tan ^ { - 1 } \sqrt { x + 2 } d x


A) 12(x+2) sin1x+2x+2+C\frac { 1 } { 2 } ( x + 2 ) \sin ^ { - 1 } \sqrt { x + 2 } - \sqrt { x + 2 } + C
B) (x+3) tan1x+2x+2+C( x + 3 ) \tan ^ { - 1 } \sqrt { x + 2 } - \sqrt { x + 2 } + C
C) 14(2x+3) sin1x+2+x+24x1+C\frac { 1 } { 4 } ( 2 x + 3 ) \sin ^ { - 1 } \sqrt { x + 2 } + \frac { \sqrt { x + 2 } } { 4 } \sqrt { - x - 1 } + C
D) 12(x+3) tan1x+2x+22+C\frac { 1 } { 2 } ( x + 3 ) \tan ^ { - 1 } \sqrt { x + 2 } - \frac { \sqrt { x + 2 } } { 2 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions