menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Thomas Calculus Early Transcendentals
  4. Exam
    Exam 9: Techniques of Integration
  5. Question
    Determine Whether the Improper Integral Converges or Diverges\[\int _ { 2 } ^ { \infty } \frac { 4 } { ( x + 1 ) ^ { 2 } } d x\]
Solved

Determine Whether the Improper Integral Converges or Diverges ∫2∞4(x+1)2dx\int _ { 2 } ^ { \infty } \frac { 4 } { ( x + 1 ) ^ { 2 } } d x∫2∞​(x+1)24​dx

Question 251

Question 251

Multiple Choice

Determine whether the improper integral converges or diverges.
- ∫2∞4(x+1) 2dx\int _ { 2 } ^ { \infty } \frac { 4 } { ( x + 1 ) ^ { 2 } } d x∫2∞​(x+1) 24​dx


A) Diverges
B) Converges

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q246: Evaluate the integral by making a

Q247: Provide an appropriate response.<br>-The "trapezoidal" sum

Q248: Evaluate the integral by using a

Q249: Evaluate the integral. The integral may

Q250: Integrate the function.<br>- <span class="ql-formula" data-value="\int

Q252: Integrate the function.<br>- <span class="ql-formula" data-value="\int

Q253: Solve the problem by integration.<br>- <span

Q254: Solve the problem.<br>-Estimate the minimum number

Q255: Find the surface area or volume.<br>-Use

Q256: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines