Solved

Solve the Initial Value Problem dydx=e4xcose4x,y(0)=0\frac { d y } { d x } = e ^ { 4 x } \cos e ^ { 4 x } , y ( 0 ) = 0

Question 173

Multiple Choice

Solve the initial value problem.
- dydx=e4xcose4x,y(0) =0\frac { d y } { d x } = e ^ { 4 x } \cos e ^ { 4 x } , y ( 0 ) = 0


A) y=14sinxy = \frac { 1 } { 4 } \sin x
B) y=14sine4x14sin1y = \frac { 1 } { 4 } \sin \mathrm { e } ^ { 4 x } - \frac { 1 } { 4 } \sin 1
C) y=14sine4x+14sin1y = - \frac { 1 } { 4 } \sin e ^ { 4 x } + \frac { 1 } { 4 } \sin 1
D) y=14sine4x14y = \frac { 1 } { 4 } \sin \mathrm { e } ^ { 4 \mathrm { x } } - \frac { 1 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions