Solved

Solve the Initial Value Problem d2ydx2=3ex,y(0)=1,y(0)=0\frac { \mathrm { d } ^ { 2 } y } { d x ^ { 2 } } = 3 e ^ { - x } , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0

Question 8

Multiple Choice

Solve the initial value problem.
- d2ydx2=3ex,y(0) =1,y(0) =0\frac { \mathrm { d } ^ { 2 } y } { d x ^ { 2 } } = 3 e ^ { - x } , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0


A) y=3ex+Cy = - 3 e ^ { - x } + C
B) y=3ex+1y = 3 e ^ { - x } + 1
C) y=3ex3x+4y = 3 e ^ { - x } - 3 x + 4
D) y=3ex+3x2y = 3 e ^ { - x } + 3 x - 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions