Solved

Solve the Differential Equation dydx=e5x5y\frac { d y } { d x } = e ^ { 5 x - 5 y }

Question 92

Multiple Choice

Solve the differential equation.
- dydx=e5x5y\frac { d y } { d x } = e ^ { 5 x - 5 y }


A) y=5e5x+Cy = 5 e ^ { 5 x } + C
B) y=5ln(e5x+C) y = 5 \ln \left( e ^ { 5 x } + C \right)
C) y=ln(e5x+C) y = \ln \left( e ^ { 5 x } + C \right)
D) y=15ln(e5x+C) y = \frac { 1 } { 5 } \ln \left( e ^ { 5 x } + C \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions