menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Thomas Calculus Early Transcendentals
  4. Exam
    Exam 8: Integrals and Transcendental Functions
  5. Question
    Verify the Integration Formula\[\int 2 x ^ { 3 } \operatorname { sech } ^ { - 1 } x ^ { 2 } d x = \frac { x ^ { 4 } } { 2 } \operatorname { sech } ^ { - 1 } x + \frac { 1 } { 2 } \sqrt { 1 - x ^ { 4 } } + C\]
Solved

Verify the Integration Formula

Question 147

Question 147

True/False

Verify the integration formula.
- ∫2x3sech⁡−1x2dx=x42sech⁡−1x+121−x4+C\int 2 x ^ { 3 } \operatorname { sech } ^ { - 1 } x ^ { 2 } d x = \frac { x ^ { 4 } } { 2 } \operatorname { sech } ^ { - 1 } x + \frac { 1 } { 2 } \sqrt { 1 - x ^ { 4 } } + C∫2x3sech−1x2dx=2x4​sech−1x+21​1−x4​+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q142: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q143: Rewrite the expression in terms of

Q144: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q145: Evaluate the integral in terms of

Q146: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q148: Rewrite the expression in terms of

Q149: Solve the problem.<br>-The velocity of a

Q150: Rewrite the expression in terms of

Q151: Solve the initial value problem.<br>- <span

Q152: Verify the integration formula.<br>- <span class="ql-formula"

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines