Solved

Find the Center of Mass of a Thin Plate of Constant

Question 28

Multiple Choice

Find the center of mass of a thin plate of constant density covering the given region.
-The region cut from the first quadrant by the circle x2+y2=49x ^ { 2 } + y ^ { 2 } = 49


A) xˉ=0,yˉ=283π\bar { x } = 0 , \bar { y } = \frac { 28 } { 3 \pi }
B) xˉ=72,yˉ=72\bar { x } = \frac { 7 } { 2 } , \bar { y } = \frac { 7 } { 2 }
C) xˉ=73π,yˉ=73π\bar { x } = \frac { 7 } { 3 \pi } , \bar { y } = \frac { 7 } { 3 \pi }
D) xˉ=283π,yˉ=283π\bar { x } = \frac { 28 } { 3 \pi } , \bar { y } = \frac { 28 } { 3 \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions