Solved

Find the Center of Mass of a Thin Plate of Constant

Question 181

Multiple Choice

Find the center of mass of a thin plate of constant density covering the given region.
-The region in the first and fourth quadrants enclosed by the curves y=41+x2y = \frac { 4 } { 1 + x ^ { 2 } } and y=41+x2y = \frac { - 4 } { 1 + x ^ { 2 } } and by the lines x=0x = 0 and x=3x = \sqrt { 3 }


A) xˉ=ln4π,yˉ=0\bar { x } = \frac { \ln 4 } { \pi } , \bar { y } = 0
B) xˉ=2π3ln4,yˉ=0\bar { x } = \frac { 2 \pi } { 3 \ln 4 } , \bar { y } = 0
C) xˉ=3ln42π,yˉ=0\bar { x } = \frac { 3 \ln 4 } { 2 \pi } , \bar { y } = 0
D) xˉ=0,yˉ=ln4π\bar { x } = 0 , \bar { y } = \frac { \ln 4 } { \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions