Solved

Find the Absolute Extreme Values of the Function on the Interval

Question 174

Multiple Choice

Find the absolute extreme values of the function on the interval.
- f(x) =tanx,π6xπ6f ( x ) = \tan x , - \frac { \pi } { 6 } \leq x \leq \frac { \pi } { 6 }


A) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } and π6- \frac { \pi } { 6 } ; absolute minimum does not exist
B) absolute maximum is 33- \frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = - \frac { \pi } { 6 }
C) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=2π18x = \frac { 2 \pi } { 18 } ; absolute minimum is 33- \frac { \sqrt { 3 } } { 3 } at x=π12x = - \frac { \pi } { 12 }
D) absolute maximum is 33\frac { \sqrt { 3 } } { 3 } at x=π6x = \frac { \pi } { 6 } ; absolute minimum is 33- \frac { \sqrt { 3 } } { 3 } at x=π6x = - \frac { \pi } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions